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Commentary on Chapter 11

Douglas G. Steigerwald

Frank Diebold and Jose Lopez have written an excellent primer on conditional
heteroskedasticity (CH) models and their use in applied work. A principal moti-
vation for CH models, as outlined in Diebold and Lopez, is their ability to parsi-
moniously capture the observed characteristics of many financial time series. By
far the most widely used CH model, in part because of the fact that estimators for
the model are simple to construct, is the generalized autoregressive conditional
heteroskedasticity (GARCH) specification of order (1, 1) with normal innovations
thenceforth termed the normal GARCH (1, 1) model). Despite its widespread
use, the normal GARCH(1, 1) model does not account for important features in
many financial time series. For example, assuming that the GARCH innovations
have a normal density generates far fewer outliers than are typically observed
in asset prices, while assuming that the order of the GARCH model is (1, 1) fails
to account for the variety of dynamic patterns observed in the conditional
heteroskedasticity of asset prices. '

As Diebold and Lopez note in describing avenues for future research, it is
important to consider alternative CH models that do account for such features of
asset prices. Two alternatives to a normal GARCH(1, 1) model, which are men-
tioned by Diebold and Lopez and for which estimators are also simple to con-
struct, are (1) to allow for nonnormal innovations that have a thicker tailed density,
thereby accounting for a larger number of outliers and (2) to allow for orders other
than (1, 1) by developing powerful test statistics for selection of order in GARCH
models, thereby accounting for a wider variety of dynamic patterns. I discuss each
of these alternatives in turn, in an effort to bring them within the set of commonly
used methods for estimation and testing of CH models.

Unknown Density

Let y, be a period-# variable (such as an exchange rate) that has conditional mean
.3 where x,e* and the period-t regressors include a constant. The normal
GARCH(1, 1) model for v, is

¥, = .Y![j + hruu h

where the period-r conditional variance is
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h= o+ oy = By + v, )

with period-¢ innovation u, and where ([, ®, «, y,) are parameters to be estim-
ated. The sequence {i, }, is a sequence of independent and identically distributed
(iid) normal random vari»bles with mean zero and variance one.'

Because the normal GARCH(L, 1) model does not adequately account for
vutliers in asset prices such as exchange rates, researchers constructing CH models
of exchange rates often assume that the density of i, has thicker tails than a normal
density. For example, Baillie and Bollerslev (1989) use both an exponential-power
and a ¢ density to model exchange rates.

Although the use of thicker-tailed parametric innovation densities does account
for a larger number of outliers, it also raises the issue of the properties of the
estimators if the selected density is misspecified. Virtually all researchers thit
estimate CH models also use a quasi-maximum likelihood estimator (QMLE). It
the assumed density is normal, the QMLE is consistent for the parameters of the
conditional variance. If the assumed density is nonnormal. then consistency of the
QMLE depends on the specification of the conditional mean. For a nonnormal
GARCH(I, 1) model, which is given by (1) and (2) together with the assumption
that u, has a nonnormal density, Newey and Steigerwald (1994) show that a non-
normal QMLE is not generally consistent.”

An alternative estimator that also accounts for a larger number of outliers is a

semiparametric estimator. A semiparametric estimator of the parameters in a
JARCH(1, 1) model is constructed under the assumption that the innovation
Jensity is any member within a class of densities, and uses a nonparametric estim-
ator of the density. Steigerwald (1994) shows that a semiparametric estimator is
consistent for general GARCH(p, ¢) modeis.

Given that a semiparametric estimator accounts for a larger number of outliers
and consistently estimates the parameters of (1) and (2), attention turns to finite
sample performance. The finite sample performance of a semiparametric estimator
Jepends on the bandwidth used to construct the nonparametric density estimator.
The bandwidth, in turn, depends on the conditional variance parameterization. For
the conditional variance parameterization (2), the regularity conditions given in

Steigerwald require that the bandwidth used to construct the nonparametric den-

sity estimator be smaller than the optimal bandwidth. Such a restriction on choice
of bandwidth may lead to a poor estimate of the density, thereby reducing the
cains of a semiparametric estimator.

A reparameterization of the conditional variance, which allows the optimal
handwidth to be used to estimate the density, is to let the variance of u, be re-
stricted only to be finite and to reparameterize the conditional variance as

;’f = em“ + (Z,(y,-, - xt—tad)z] + }/\hczq- (3)
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Linton (1993) develops this reparameterization for ARCH models, Drost and
Klaasen (1993) and Steigerwald extend the reparameterization to GARCH
models.”

A guide to the finite sample pertormance of semiparametric estimators for the
two conditional variance parameterizations is provided by the simulations con-
ained in Engle and Gonzalez-Rivera (1991) and Steigerwald. Both studies com-
pare the performance of a semiparametric estimator with a normal QMLE. For a
sample size of 2,000, Engle and Gonzalez-Rivera report essentially no gain in
cificiency for a semiparametric estimator of the parameters in (1) and (2) when the
density of u, is a 1 density with 5 degrees of freedom. Steigerwald, using a different
nonparametric estimator, reports more favorable results for a semiparametric
estimator of the parameters in (1) and (2), linding some efficiency gains with
a sample of only fifty observations when the density for u, is a t density with 5
degrees of freedom. The efficiency gains increase dramatically if (3) replaces (2),
indicating that the parameterization of the conditional variance is important for
applied work.

Testing for Order

All discussion in the preceding section considers a fixed order ( L 1) for the
conditional variance. As is noted in the introduction, the (1, 1) order specification
fails to account for the variety of dynamic patterns in many time series. In re-
sponse, [ turn to extending the GARCH(1, 1) specification to general order ( D.q).

To extend the GARCH(I, 1) specification to GARCH(p, ¢) requires a test
statistic for choosing correct order. To keep the following discussion of test sta-
tistics clear, I consider two distinct testing problems. The first problem is to test
the null hypothesis that the conditional variance is ARCH(p) against the univariate
alternative hypothesis that the conditional variance is ARCH( p + 1). The second
problem is to test the null hypothesis that the conditional variance is ARCH( P
against the multivariate alternative hypothesis that the conditional variance is
ARCH(p + k), where k > 1. In particular, the two problems can be viewed as
testing the null hypothesis of homoskedasticity against the alternative cither of
ARCH(1) or ARCH(p).*

Engle (1982) develops Lagrange multiplier (LM) test statistics for the univariate
testing problem in a normal ARCH model. The test is two sided, the null hypo-
thesis that a specific conditional variance parameter equals zero is tested against
the alternative that the parameter is nonzero. Yet to ensure that the conditional
variance is always positive, the parameter of the conditional variance must be non-
negative. Therefore. more powertul test statistics can be constructed that are one
sided. For the univariate testing problem, the signed square-root of the LM test
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statistic provides such a one-sided test, For the muitivariate testing problem, there
is no uniformly best one-sided test because the region over which the power func-
tion is evaluated spans more than one dimension, Lee and King (1993) propose a
one-sided test statistic, termed an LBS test statistic, for the multiv aiate testing
problem that maximizes the average slope, over all directions, of the power func-
tion in a neighborhood of the null hypothesis. They show that their one-sided test
can be more powertul in finite samples than a two-sided LM test statistic.

Both the LM test statistic and the LBS test statistic are constructed under the
assumption that the innovation density is normal. Fox (1994a) develops semi-
parametric versions of both test statistics. He finds that incorporating a nonpara-
metric estimator of the density can have important finite sample consequences.
Specifically, for samples of 100 observations the semiparametric test statistics
achieve size-adjusted power gains of as much as 20 percent over their parametric
counter-parts, Linton and Steigerwald (1994) extend the semiparametric tests to
the reparameterization of the conditional variance in (3) and show that the semi-
parametric tests are optimal in that they maximize the average slope of the power
function in a neighborhood of the null hypothesis for any innovation density in a
general class. Fox also finds that testing for correct order is important in estima-
tion, incorrect order specification can lead to substantial bias in the estimators of
the conditional variance parameters.

Empirical Implementation

To demonstrate the potential importance of semiparametric methods in testing and
estimation, | construct a model for the dollar per pound exchange rate. The data
are collected at noon on the New York foreign exchange market and span the
period January 2, 1985 to September 30, 1993 yielding 2,185 observations. As is
commonly done, [ model the first difference of the logarithm of the exchange rate
rather than the exchange rate itself. The initial model is

uvl = [3 + h!ut!

where v, is the period-t value of the change in the logarithm of the exchange rate
and the conditional variance specification is given by

hi= eIl + ayly,., = B + nhiy.

Estimates of the parameters are reported in Table 11.1. (Standard errors are
reported in parentheses below each estimate,) Although the magnitude of the
normal QML and semiparametric estimates differ only slightly, the asymptotic
standard errors of the semiparametric estimator are typically about half the size of
the asymptotic standard errors for the normal QMLE. In addition, as Fox (1994b)
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Table 11.1. Parameter estimates for an exchange-rate model

Parameter Normal QML Semiparametric
Beta -0231 ~227
(.67 14) (3887
Alpha 0623 0702
(3540 1333
Gamma 8884 8876
(.5638) (.2742)

notes, apparently small differences in the point estimates of the conditional vart-
ance parameters can have important economic consequences. He shows that op-
timal portfolio weights based on the estimated conditional variance process differ
markedly for two sets of estimates that differ only slightly, as do those in Table
I1.1. The portfolio weights implied by the semiparametric estimators are better,
in the sense that the risk associated with a portfolio that provides a tixed expected
return is reduced by 8 to 10 percent out-of-sample.

Although the GARCH(1, 1) specification is common in the empirical finance
literature, it may not adequately account for the dynamic pattern in the data. To
test for incorrect order specification, [ test the null hypothesis that the conditional
variance is GARCH(1, 1) against the alternative hypothesis that the conditional
variance is GARCH(2, 1). I construct both parametric and semiparametric versions
of the LM test statistic and the King and Lee test statistic. Both the parametric and
semiparametric LM test statistics, which are two-sided tests, fail to reject the null
hypothesis. The parametric King and Lee test statistic also fails to clearly reject
the null hypothesis. Only the semiparametric King and Lee test statistic clearly
rejects the null hypothesis. It appears that if the true dynamic process 1s richer than
a GARCH(1, 1), the power gains available from both a nonparametric density
estimator and a one-sided alternative are needed to detect it.

In summary, recent advances in econometric methodology have provided
researchers with powerful tools to move beyond the restrictive framework of a
normal GARCH(1, 1) model. Semiparametric estimators and test statistics are
available and provide alternatives that more flexibly account for the wide variety
of patterns in financial time series.

Notes

I. The variance of u, is assumed to equal one because (@, @, y) and the scale of u, are not
wparately dentified.
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1. To ensure that the likelihood has a unique maximum, which is a necessary condition for
consistent estimation, the set of regressors must include the conditional standard deviation.

3. In(3) the parameter wcannot be separately identified because the variance of u, is restricted only
to be finite, so only ratios of the parar~sters (namely ¢”«t, and ¢*y,) are identitied.

4. Considering only ARCH processes is not restricti: ~, as . »¢ and King . 1993) note testing a null
hypothesis of homoscedasticity against an alternative hypothesis of ARCH{ p) i« * uivalent o testing
against an alternative of GARCH(p, g).
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